Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw
نویسندگان
چکیده
BACKGROUND An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. METHODS Six enzymes, CBH1 (Cel7a), CBH2 (Cel6a), EG1 (Cel7b), EG2 (Cel5a), as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a) were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. RESULTS The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25%) which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. CONCLUSIONS The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.
منابع مشابه
Mixtures of thermostable enzymes show high performance in biomass saccharification.
Optimal enzyme mixtures of six Trichoderma reesei enzymes and five thermostable enzyme components were developed for the hydrolysis of hydrothermally pretreated wheat straw, alkaline oxidised sugar cane bagasse and steam-exploded bagasse by statistically designed experiments. Preliminary studies to narrow down the optimization parameters showed that a cellobiohydrolase/endoglucanase (CBH/EG) ra...
متن کاملImprovement of Enzymatic Hydrolysis of Steam-exploded Wheat Straw by Simultaneous Glucose and Xylose Liberation
Lignocellulosic biomass, for its large quantities and relatively low cost, is regarded as a potential renewable energy resource for cost-effective ethanol production.1 Wheat straw is one of the most abundant crop residues in European countries with a production of 170 million tonnes per year, and it seems to be one of the cheapest and the most useful raw material for ethanol production.2 Wheat ...
متن کاملLaccase detoxification of steam-exploded wheat straw for second generation bioethanol.
In this work we compared the efficiency of a laccase treatment performed on steam-exploded wheat straw pretreated under soft conditions (water impregnation) or harsh conditions (impregnation with diluted acid). The effect of several enzymatic treatment parameters (pH, time of incubation, laccase origin and loading) was analysed. The results obtained indicated that severity conditions applied du...
متن کاملStrong cellulase inhibitors from the hydrothermal pretreatment of wheat straw
BACKGROUND The use of the enzymatic hydrolysis of lignocellulose with subsequent fermentation to ethanol provides a green alternative for the production of transportation fuels. Because of its recalcitrant nature, the lignocellulosic biomass must be pretreated before enzymatic hydrolysis. However, the pretreatment often results in the formation of compounds that are inhibitory for the enzymes o...
متن کاملFast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes
BACKGROUND Enzymatic breakdown of lignocellulosic biomass is a known bottleneck for the production of high-value molecules and biofuels from renewable sources. Filamentous fungi are the predominant natural source of enzymes acting on lignocellulose. We describe the extraordinary cellulose-deconstructing capacity of the basidiomycete Laetisaria arvalis, a soil-inhabiting fungus. RESULTS The L....
متن کامل